

UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO PLANO DE DISCIPLINA

do Vale do São Francisco				
NOME		COLEGIADO	CÓDIGO	SEMESTRE
QUIMÍCA GERAL TEÓRICA CPROD		QUIM0017	2018.2	
CARGA HORÁRIA	TEÓRICA	PRÁTICA	HORÁRIO	
30h	30h		QR 14:00 – 16:00 h	
CURSOS ATE		SUB-TURMAS		
TODOS OS CU	I	PΧ		
PROFESSOR	7	ΓΙΤULAÇÃΟ		
LUCIMAR PA	I	OOUTORA		

EMENTA

Conceitos básicos. Estrutura atômica e eletrônica. Tabela periódica. Ligações químicas. Relações estequiométricas. Termodinâmica. Estudos dos gases. Propriedades dos líquidos e soluções. Termoquímica. Equilíbrio químico. Cinética química. Eletroquímica.

OBJETIVOS

- Conhecer os modelos atômicos;
- Saber utilizar a tabela periódica, bem como a sua importância;
- Identificar os diferentes tipos de ligações e como elas influenciam nas propriedades dos materiais;
- Conhecer os processos termodinâmicos, termoquímicos e cinéticos em uma reação química;
- Utilizar os cálculos estequiométricos para determinar o rendimento de uma reação;
- Entender o significado de equilíbrio químico e a sua importância.

METODOLOGIA (Recursos, materiais e procedimentos)

A disciplina será trabalhada com aulas expositivo-dialogadas, onde serão fornecidos os componentes teóricos e será realizada a prática de exercícios. Para a explanação do conteúdo serão utilizados como recursos o projetor multimídia, quadro branco, modelos moleculares, vídeos, entre outros recursos.

FORMAS DE AVALIAÇÃO

A avaliação será realizada mediante 3 (três) provas escritas. A nota final da disciplina será composta pela média aritmética das 3(três) provas escritas, que serão lançadas no sistema SIGA.

CONTEÚD	CONTEÚDOS DIDÁTICOS				
AULA	Temas Abordados /Atividades Desenvolvidas	Professor	Carga Horária		
		(es)	Teórica	Prática	
01	Apresentação do PD, ementa, critérios de avaliação.	LUCIMAR	2h		
	Conceitos básicos de química. Modelos atômicos.				
02	Estrutura eletrônica dos átomos. Distribuição eletrônica.	LUCIMAR	2h		
	Números quânticos.				
03	Propriedades periódicas. Introdução às Ligações Químicas.	LUCIMAR	2h		
04	Ligação Iônica. Ciclo de Born Haber.	LUCIMAR	2h		
05	Ligação Covalente. Carga Formal	LUCIMAR	2h		
06	Primeira Avaliação	LUCIMAR	2h		
07	Teoria de repulsão do par de elétrons da camada de				
	valência (VSEPR). Geometria Molecular.	LUCIMAR	2h		
08	Teoria da Ligação de Valência (TLV). Hibridização dos	LUCIMAR	2h		
	orbitais. Teoria do Orbital Molecular (TOM).				
09	Ligações Intermoleculares. Propriedades dos Líquidos	LUCIMAR	2h		
10	Estequiometria das reações e das soluções	LUCIMAR	2h		
11	Segunda Avaliação	LUCIMAR	2h		
12	Introdução à Termodinâmica. Trabalho, calor e energia	LUCIMAR	2h		
	interna. Primeira lei da termodinâmica.				
13	Termoquímica. Entalpia. Calorimetria. Lei de Hess.	LUCIMAR	2h		
	Equações termoquímicas.				
14	Termodinâmica Química; entropia e segunda lei da	LUCIMAR	2h		

	termodinâmica; energia livre de Gibbs.			
15	Equilíbrio químico. Constante de equilíbrio. Equilíbrio e o	LUCIMAR	2h	
	princípio de Le Chatelier.			
	Cinética Química. Fatores que influenciam na velocidade	LUCIMAR	2h	
16	das reações. Concentração e tempo. Ordem de reação.			
	Tempo de meia-vida. Temperatura e velocidade.			
17	Terceira Avaliação	LUCIMAR	2h	
18	Segunda Chamada	LUCIMAR	2h	
19	Prova Final	LUCIMAR	2h	
TOTAL			34h	

REFERÊNCIAS BIBLIOGRÁFICAS

- Brown, T.L. & Lemay Jr & Bursten, B.E. Química: A ciência central. 7ª edição, LTC. RJ, 1999.
 Atkins, P.; Jones, L., Princípios de química: questionando a vida moderna e o meio ambiente, Bookman, Porto alegre, 2001.

COMPLEMENTAR

- 1. Holmes, T.; Brown, L. S., Química aplicada à engenharia, Cengage Learning, 2009. 2. Brady, J. E. & Humiston, G. E. Química Geral. Vol 1 e 2, LTC, RJ, 1996.

Data	Assinatura do professor	Aprovado no Colegiado	Coordenador do Colegiado
/		//	